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E and j vary discontinuously, but it might be possible to use
numerical solutions as a basis for an integral method, as
difficult boundary conditions have been handled hi other
problems,
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Procedure for the Determination of
Impact Probabilities

D. R. CRUISE*
U. S. Naval Ordnance Test Station, China Lake, Calif.

The various steps required to determine the dis-
tribution of hits around a two-dimensional or three-
dimensional target caused by random normal errors
in the fire-control parameters are discussed. A
method is presented to express the distribution as
a function of miss distance rather than of the three
space variables.
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Nomenclature
= distribution parameters
= elements of D
= n by m matrix of partial derivatives d/*/ds/
= transposed D matrix
= functions of fire-control parameters
= integral
= number of fire-control parameters
= number of dimensions, 2 or 3
= probability density function
= a transformation matrix that yields principal axes
= transposed P matrix
= miss distance
= fire-control parameters
= /*2

2//*4
= elements of V8
= m by m variance-covariance matrix of fire-control

parameters
— n by n variance-covariance matrix of impact co-

ordinates
= variance-covariance matrix along principal axes
= iih impact coordinate
= error in jbh fire-control parameter
= ith component of miss distance
= miss distances along principal axis
= n by 1 matrix containing dxi
= m by 1 matrix containing 5s/
= kih moment of r about origin
= variance of jth fire-control parameter
= the eigenvalues of Vx = the diagonal elements of

Vx
r = the variances along principal axes
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Introduction

THE impact coordinates of a missile as a function of fire-
control parameters may be predicted by equations of the

folio wing form:

= fi(Si,SZ, n) 1 < i < n (1)

where s,- represents any number of parameters, such as the
initial coordinates, velocities, time, etc. Depending on the
dimensionality of the target, n may be two or three.

A variation in the impact coordinates dxi caused by small
variations in the parameters dsj may be expressed by the
folio whig equation:

(AX) = D(AS) (2)

where D is an n by m matrix, the elements of which are de-
nned by

da = b/i/ds,- (3)

Random variations in the parameters are usually assumed
to be normally and independently distributed with mean 0
and standard deviation crs.. Associated with these random
variations is a "variance-covariance" matrix1 vs which is of
dimensions m by m and has elements denned by

= 0
= <rs. i = j (4)

The variance-covariance matrix for the impact coordinates
is then found by a simple matrix product

Vx = DVSD' (5)

where Vx is a symmetrical n by n matrix.
Vx is the matrix of second moments of the probability

density function in the reference frame of the impact co-
ordinates, and in general, off-diagonal terms will appear.
It is well known in both statistics and mechanics, where such
matrices appear, that there exists a reference frame where
the off-diagonal terms will not appear. The transformation
equation takes the same form as Eq. 5.2

Vx = PVX>P' (6)

* where Vx
f is a diagonal matrix and P rotates the original axes

into principal axes.
The diagonal elements of Vx

f are the eigenvalues of Vx
and may be found by various techniques such as are described
in Todd.3 It is not necessary to find the P matrix.

The elements cr*/2, crX2'2, and cr^'2 (from Vx>) are the vari-
ances along the principal axes and completely describe the
probability distribution of hits around the target under the
forementioned assumptions.

A simplification in notation is now in order. Let <rx.'2 =
(Ti2 and let the ith component of miss distance along the
principal axes be denoted 5; instead of &r/.

The distribution of hits around the target may now be
written for the three-dimensional situation:

= a exp{ - (7)

where a is the normalizing factor that gives a unit volume
under the curve.

Analytically, the problem is completely solved but not in a
practical form on which to base human judgment, for in prac-
tice one is interested only in how far the target is missed and
will have no information as to the direction of the miss. So
this information must be deleted from the probability density
function above.

The direct approach is to convert to polar or spherical
coordinates and integrate out the angular dependence. The
integration is possible analytically only in the special situa-
tions where all the variances are equal. The distributions ob-
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tained in these situations are
p(r) = ar exp(— r2/2<r2) (two-dimensional situation) (8)

p(r) = ar2 exp(— r2/2cr2) (three-dimensional situation) (9)
where a = cri = <r2 = (in the three-dimensional situation) <r3.
When the variances are not equal the process must be done
numerically. This has been done for a wide range of points
in the two-dimensional situation by Baur. 4

Another approach is presented here. It was developed
to fulfill the following objectives: 1) the method should
have a relative error less than 1%; 2) it should work for
both the two-dimensional and three-dimensional situations;
3) it should form the basis of a fast, efficient subroutine for
digital computers; 4) it should provide the r probability
distribution rather than just the points thereof.

Method

The method is based on the fact that certain moments of
the distribution [Eq. (7)] may be obtained analytically.
The r moments may be denned as follows :

= f " f " f "J — <x> J — co J — o
(10)

where r2 = (<5i)2 + (<52)2 + (<53)2

Integration by parts yields the even moments of the dis-
tribution, and, in particular, the following:

/ o I _. 2 I _. 2^\ f~\ 1 \/Z2 ^ \(T\ ~r cr2 ~r 0^3 )Mo vJ-J-y

cr2 o-3
(12)

where jito is arbitrary and has already been taken to be unity.
5. Let us assume that the distribution as a function of miss
distance (r) always takes the form of Eqs. (8) and (9), namely

p(r) = arb exp(-cr2) (13)
Then one may determine the parameters a, b, and c so that

the'jOth second and fourth moments of this distribution are
the jsame as those of the distribution of Eq. (7). Integration
byjparts will also give the even moments of this distribution

(14)

(15)

(16)
(17)

M4 = LCo -
where again juo is taken as unity.

Then b and c are found as follows:
6 = (3T - !)/(! - T)
c = (6 + l)/2/i2

where T = M22/M4 and the numerical values of /*2 and jm are
taken from Eqs. (11) and (12). The normalizing parameter
a is found by evaluating the integral

/ = fc°r6exp(-cr2)^r•/ o
which may be expanded as follows:

I = 1
i / cw_ L / 5
2 V> + 5/ 3! \6

(18)
A value of r = 5/(2c)1/2 was found to be sufficiently close to
infinity to evaluate the total integral.

Finally,
a = I/I (19)

Once the parameters a, 6, and c are found, the expansion
[Eq. (18)] may be used to find the "cumulative" probability.

Results

The distributions obtained by this method were found to
have errors of less than 0.5%, based on the error hi jiij that
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Fig. 1 Distributions obtained for a
target.

two-dimensional

was computed numerically for a number of test cases. In
the two-dimensional case the agreement with Baur is within
1%. Four examples of the distributions obtained by this
method are given for a two-dimensional target (Fig. 1).
These are obtained by setting one of the variances (cr3

2) to
zero in the foregoing equation. No figures appear for the
three-dimensional case because covering an interesting range
of values for the three variances requires too many figures
for an article of this size.

All calculations described above have been coded in the
FORTRAN language and are available from the author.
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Low Pressure Rocket Extinction

FLOYD A. ANDERSON,* ROGER A. STREHLow,f
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Introduction
TI ^HERE has been considerable interest recently in de-
A signing solid rockets for low pressure operation because

of the shell weight economy this would allow. Two pri-
mary requirements for this type of design are that there be
no loss of combustion efficiency and that the rocket ignite
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